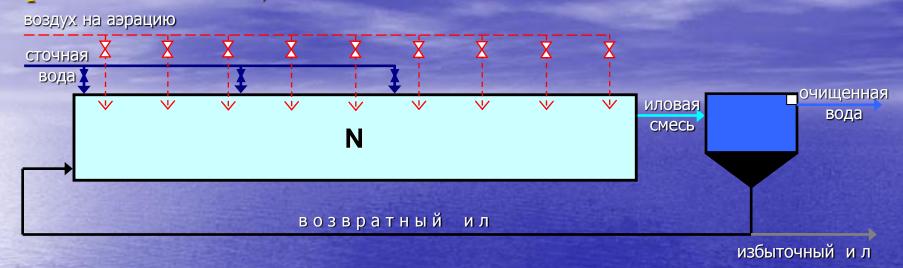
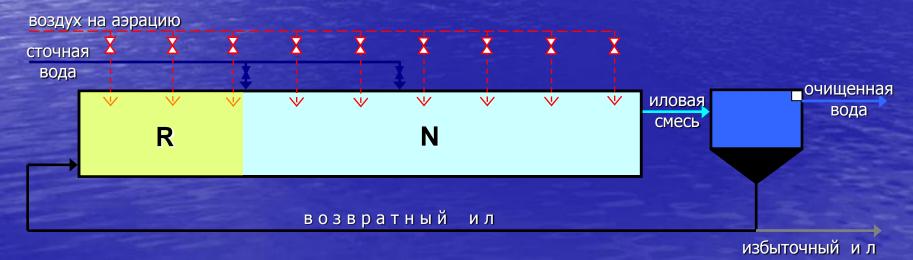


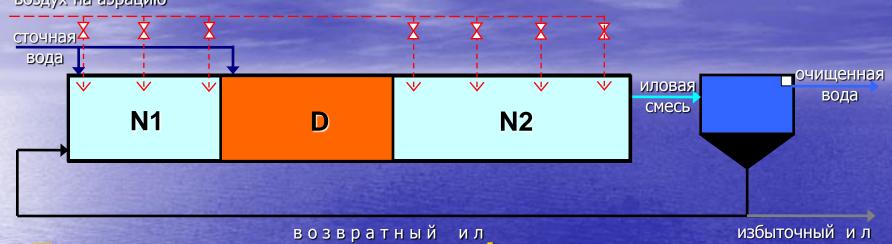
Модернизация сооружений очистки сточных вод и оптимизация процесса удаления биогенных элементов по НДТ-3


Конференция «Сточные воды: транспортировка, очистка, обработка осадка»

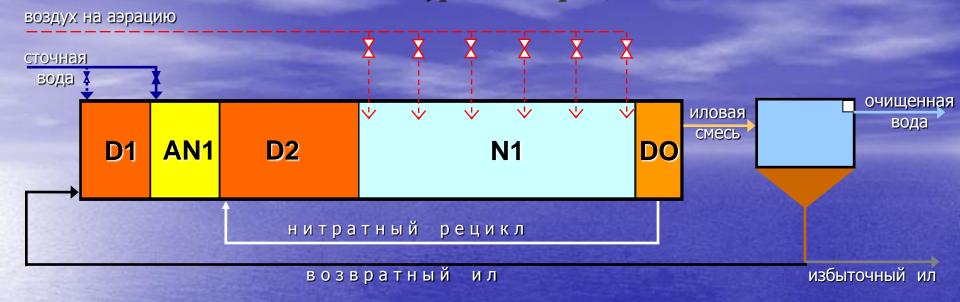
01 июня 2011 г.
Николай Большаков

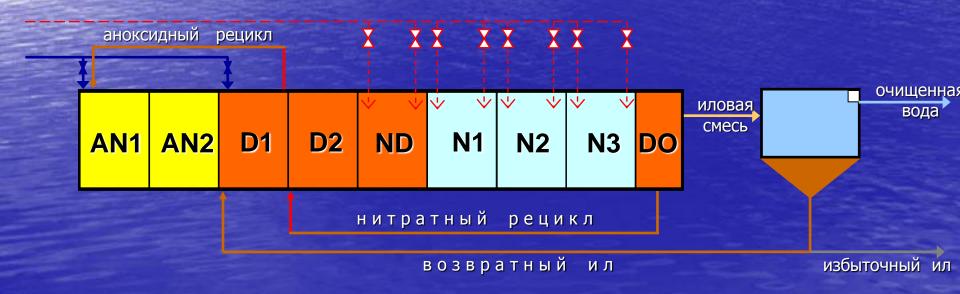

NBolshakov@yandex.ru

http://www.ecovod.spb.ru/


Технология аэробной биологической очистки от органических веществ

Технология аэробной биологической очистки от органических веществ с регенерацией активного ила


Технология нитриденитрификации с предшествующей нитрификацией (без нитратной рециркуляции иловой смеси) воздух на аэрацию


Технология нитриденитрификации с предшествующей денитрификацией (с нитратной рециркуляцией иловой смеси)

Йохинесбургский процесс

Модифицированный UCT процесс

Условия по кислороду в биореакторе

- Аэробные условия в среде есть как растворенный (концентрация растворенного кислорода больше 2 мг/л), так и химически связанный кислород (NO₃⁻);
- Аноксидные условия растворенный кислород отсутствует, есть химически связанный кислород;
- Анаэробные условия отсутствует как растворенный, так и химически связанный кислород.

Требования, предъявляемые к математической модели

- 1. Модель с достаточной для практики точностью должна описывать процессы очистки от органических веществ по БПК, взвешенных веществ, азота и фосфора городских и близких к ним по составу сточных вод и позволять рассчитывать выходные концентрации названных примесей (на выходе всей системы биологической очистки, т. е. вторичного отстойника) в зависимости от входных концентраций, технологической схемы и режима работы очистного сооружения.
- 2. Используемые входные и выходные показатели должны отвечать нормируемым в России загрязняющим веществам, в частности концентрация органических веществ должна выражаться в единицах БПК полного для взболтанной пробы; концентрация взвешенных веществ в единицах а. с. в.

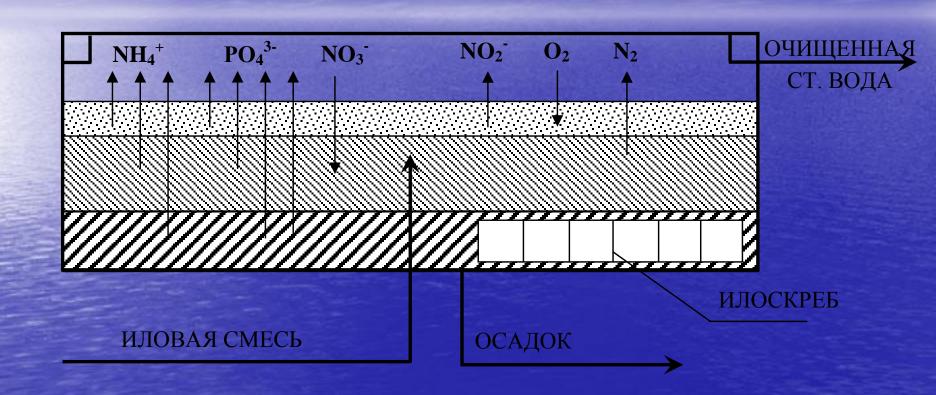
Требования, предъявляемые к математической модели (прод.)

- 3. Все параметры модели должны определяться по эксплуатационным данным или приниматься константами, т. е. модель не должна включать параметры, для определения которых требуются специальные эксперименты.
- 4. В модель должны быть включены все управляемые параметры для удобства ее применения на стадии оптимизации технологического режима. Используемые входные и выходные показатели должны отвечать нормируемым в России загрязняющим веществам, в частности концентрация органических веществ должна выражаться в единицах БПК полного для взболтанной пробы; концентрация взвешенных веществ в единицах а. с. в.
- 5. В модели должны быть учтены все основные процессы, влияющие на эффективность очистки в системе аэротенк-вторичный отстойник.

Управляемые параметры модели

- Расход возвратного ила.
- Расход избыточного ила.
- Расход воздуха на аэрацию и его распределение по длине аэротенка.
- Объем регенератора (для аэротенков с переменным объемом регенератора).

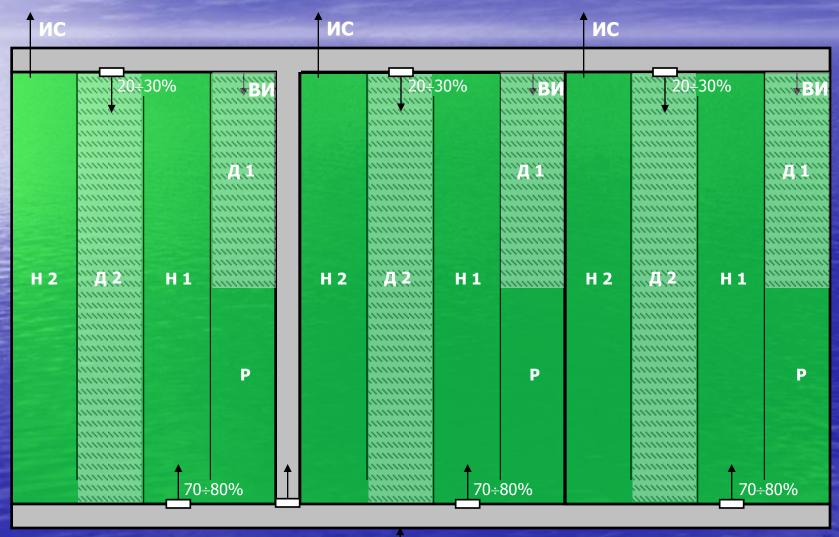
Управляемые параметры позволяют регулировать:

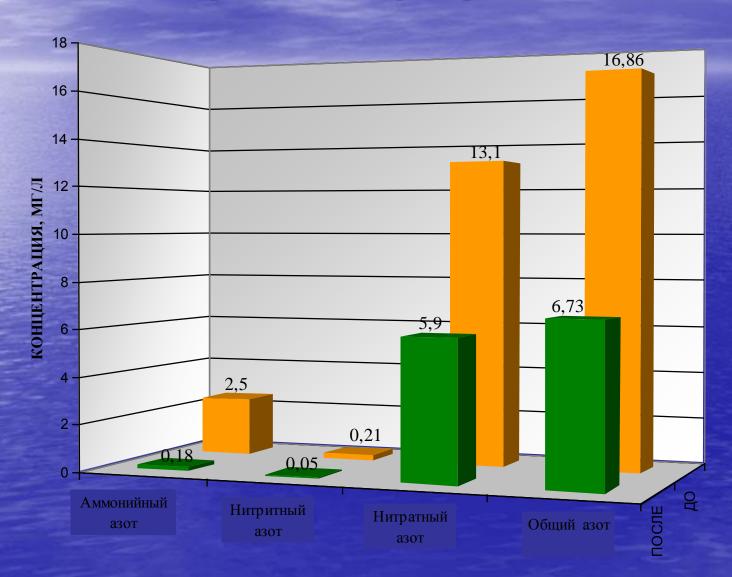

- дозу ила в аэротенке;
- возраст активного ила;
- уровень осадка во вторичных отстойниках;
- концентрацию кислорода в аэротенке и вторичном отстойнике.

Методика расчета возраста и прироста ила

$$\begin{cases} \tau_{x} = \frac{\tau X}{\Delta X} \\ \Delta X = \frac{0.45L_{en}(1+0.2b_{T}\tau_{x}) + B_{en}(1+0.5b_{T}\tau_{x})}{1+b_{T}\tau_{x}} \end{cases}$$

где τ_x — возраст ила; ΔX - прирост ила, мг/л; τ - время пребывания сточной воды в аэротенке; X — концентрация активного ила; Len — БПК $_\Pi$ растворенных органических веществ на входе аэротенка; Ben — концентрация взвешенных веществ на входе аэротенка; y_0 — истинный экономический коэффициент; b_T — константа скорости самоокисления активного ила при температуре сточной воды T.


процессы во вторичном отстойнике


Схема работы аэротенка по технологии аэробной биологической очистки с нитрификацией (КОС г. Тихвин)

Реализация технологии нитриденитрификации

Результаты перехода на технологию нитриденитрификации

Выводы

Использование математических моделей на городских очистных сооружениях позволяет:

- 1. Получить существенный экономический результат при снижении
 - Инвестиционных затрат:
 - Строительные работы и механическое оборудование
 - Максимальное использование возможностей существующих сооружений перед их эффективным расширением
 - Перенос и сокращение инвестиционных вложений
 - Эксплуатационных затрат:
 - Энергия, реагенты, плата за сброс
- 2. Провести быстрые технологические испытания без нарушения процесса
 - Эксплуатация в различных условиях (в летний, зимний периоды и т.д.)
 - Исследование вариантов расширения и модернизации
- 3. Сократить сброс биогенов

Спасибо за внимание!